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Summary

ATF4, a DNA-binding factor that modulates responses to amino

acid availability and ribosomal function, has been shown to be

altered in both liver and fibroblasts from two strains of long-lived

mice, i.e. Snell dwarf and PAPP-A knockout mice. New data now

show elevated ATF4 levels, and elevation of ATF4-dependent

proteins and mRNAs, in liver of mice treated with acarbose or

rapamycin, calorically restricted mice, methionine-restricted mice,

and mice subjected to litter crowding. Elevation of ATF4, at least

in liver, thus seems to be a shared feature of diets, drugs, genes,

and developmental alterations that extend maximum lifespan in

mice.
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Introduction

ATF4 is a transcriptional factor which senses deficits in protein

translation, typically related to ER stress or amino acid limitation, and

in turn activates a group of target genes through a consensus ATF4

promoter binding motif (Harding et al., 2003; Su et al., 2009). A role for

ATF4 in modulation of aging was suggested by evidence that lifespan

extension in yeast, whether caused by 60S ribosome mutations, lower

TOR function, or nutrient deprivation, depended on the yeast homo-

logue, Gcn4 (Steffen et al., 2008).

To see whether ATF4 might contribute to extended longevity in Snell

dwarf mice, we evaluated ATF4 status in fibroblasts and liver of young

adult Snell dwarf mice. In Snell dwarf fibroblasts, we noted augmented

ATF4 responses to amino acid withdrawal, cadmium, H2O2, and the ER

stress agent tunicamycin, with parallel increases in ATF4 itself as well as

in multiple ATF4 target genes (Li & Miller, 2014). Liver of Snell dwarf

mice also showed elevation of ATF4 protein, and of mRNA and protein

for multiple ATF4 target genes. Parallel findings were also noted in

fibroblasts and liver of PAPP-A KO mice, in which lifespan extension

(Conover & Bale, 2007) is thought to reflect diminished IGF-1 availability

secondary to higher tissue levels of IGF-1 binding proteins. Thus, both of

these long-lived mice, with alterations in GH and/or IGF-1 action,

showed augmented ATF4 levels in liver and heightened ATF4 respon-

siveness in skin-derived fibroblasts subjected to oxidant or ER stress.

To see whether elevated ATF4 function might be a feature shared by

genetic and nongenetic models of slow aging in mice, we have now

evaluated ATF4, ATF4-controlled proteins, and ATF4-controlled

mRNA levels in liver of five kinds of mice known to have increased

maximal longevity caused by nongenetic interventions: mice treated

with acarbose (Harrison et al., 2014) or rapamycin (Harrison et al.,

2009; Miller et al., 2011), mice subjected to caloric restriction (Flurkey

et al., 2010) or methionine restriction (Miller et al., 2005; Sun et al.,

2009), and mice kept in crowded litters from birth to weaning

(Sun et al., 2009).

Acarbose (Aca) inhibits a-glucosidases in the intestine, thereby

slowing the breakdown of complex polysaccharides to sugars and thus

blunting the spike in blood glucose levels that follows a meal. It is an

FDA-approved agent for treatment of human diabetes. Food intake is

typically increased in Aca-treated mice (Yamamoto & Otsuki, 2006). The

NIA Interventions Testing Program (ITP) has found (Harrison et al., 2014)

that Aca increases median lifespan in genetically heterogeneous

UM-HET3 mice by 22% in males (P < 0.0001) and by 5% in females

(P = 0.01). Body weight was reduced, at 12 months of age, by 14% in

males and by 22% in females, suggesting that the sexual dimorphism in

longevity response does not parallel effects on body weight. Aca lowers

fasting insulin levels in males but not in females, lowers IGF-1 levels in

both sexes, and leads to a significant increase in blood levels of FGF-21, a

mediator that declines dramatically in mice on a calorie-restricted (CR)

diet (Harrison et al., 2014). Maximum lifespan, or more specifically the

likelihood of survival to the 90th percentile age of the joint survival

distribution (Wang et al., 2004), is increased in both males and females

(P < 0.0001).

Rapamycin, an inhibitor of mTOR kinase, increases lifespan of both

male and female UM-HET3 mice whether started at 9 or at 20 months of

age (Harrison et al., 2009; Miller et al., 2011, 2014). At a dose of 42

parts per million (ppm), rapamycin leads to an increase of 23% in male

lifespan and 26% in female lifespan (Miller et al., 2014). The stronger

percentage response in females may reflect higher blood levels in

females, compared with males consuming the same proportion of

rapamycin in food (Miller et al., 2014). Rapamycin-treated mice also

show retardation of age-related deficits in liver, tendon, heart,

endometrium, and adrenal tissues, and delay in the age-sensitive decline

in spontaneous activity (Wilkinson et al., 2012). Some age-sensitive

physiological endpoints show improvement shortly after rapamycin

treatment, some show beneficial effects only at older ages, and some do

not show any improvement in an analysis of male C57BL/6 mice (Neff

et al., 2013). Rapamycin also retards or reverses age-related declines in

bone marrow production of B lymphocytes (Chen et al., 2009),

age-dependent deficits in pulmonary responses to bacterial infection

(Hinojosa et al., 2012), and development of both pathologic changes

and behavioral deficits in a mouse model of Alzheimer’s disease

(Caccamo et al., 2010). Rapamycin impairs glucose handling in multiple

ways, with deficits in insulin production and response contributing in

ways that depend on dose and time of exposure.

Caloric restriction (CR) is the best-studied method for slowing aging

and extending lifespan in rodents, with beneficial effects on dozens of

strains of rats and mice (Weindruch & Walford, 1988), including the

UM-HET3 mice used in this study and the ITP protocol (Flurkey et al.,

2010). Because CR diets diminish mTOR function, it has been suggested

that inhibition of mTOR may be a shared feature of the anti-aging
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pathways stimulated by CR and rapamycin (Johnson et al., 2013), but

UM-HET3 mice exposed to rapamycin or to CR diets differ in many ways,

including effects on fasting insulin and glucose levels, alteration in serum

FGF-21 levels (depressed by CR diet and increased by rapamycin), and

expression of hepatic genes involved in metabolism of xenobiotics (Miller

et al., 2014).

Diets with reduced levels of methionine (‘Meth-R’ diets) lead to

lifespan extension of 40% or more in rats and extend lifespan of multiple

strains of rats despite an increase in food consumed per gram of body

mass (Zimmerman et al., 2003). Meth-R diet also increases maximum

lifespan in CB6F1 mice whether initiated at 6 weeks or at 12 months of

age and retards development of age-related declines in T cell subset

distribution and eye lens transparency (Miller et al., 2005; Sun et al.,

2009). Although Meth-R mice weigh less than controls and have lower

levels of IGF-1, insulin, and glucose (Miller et al., 2005), there are many

physiological differences between the CR and Meth-R systems. There is,

for example, little overlap in patterns of changed hepatic gene

expression, and Meth-R mice do not show the increase in p38 and

pERK kinase activation and decline in mTOR function seen in liver of CR

mice (Sun et al., 2009).

In the crowded litter (CL) model, mice are foster nursed in groups of

12 (‘CL12’) pups per mother and compared with controls suckled in

groups of 8 per mother (CL8 controls). Pups are weaned at 3 weeks of

age and given unrestricted access to food thereafter. CL12 mice live

18% longer than controls (P = 0.0007) and show a significant increase

in maximum lifespan (Sun et al., 2009). Although the intervention is thus

limited to the first three weeks of life, patterns of liver gene expression

remain distinct from controls at both 12 and 22 months of age

(Steinbaugh et al., 2012), and CL12 and CL15 mice show alterations in

glucose tolerance and leptin sensitivity that last at least to 22 months

(Sadagurski et al., 2014).

Results

Increased expression of ATF4, ATF3, and CHOP proteins in

liver of five kinds of slow-aging mice

Both male and female mice exposed to acarbose from 4 to 12 months of

age had significant elevations of ATF4 protein in liver (Fig. 1A). ATF3 and

CHOP proteins, which are known to be modulated by ATF4 function,

were also higher in acarbose-treated male and female mice (Fig. 1B,C).

Figure 2A and B show representative immunoblots for these Aca-treated

mice and controls. Similarly, ATF4, ATF3, and CHOP protein levels were

elevated in male and female rapamycin-treated mice (age 22 months;

Figure 1DEF; see Figure 2CD for representative immunoblot images).

Significant increases in all three proteins were also seen in male mice

from a group of CR mice (calorie restricted from 1.5 to 12 months;

Figs 1G–I and 2E), and in 18-month-old male mice from a methionine-

restricted cohort (Figs 1J–L and 2F). Lastly, female mice from a CL

cohort, evaluated at 6 months, were found to have higher levels of all

three proteins, with a significant effect (P < 0.05) seen for ATF4 and

CHOP but not for ATF3 (Figs 1M–O and 2G).

Increased transcription of ATF4 target genes in five slow-

aging mouse models

ATF4 regulates transcription of many genes, including (in liver) ATF3

(activating transcription factor 3), CHOP (CCAAT/enhancer-binding

protein homologous protein, also called GADD15), and ASNS (aspara-

gine synthetase). Figure 3 shows hepatic mRNA levels for these three

genes in each of the five varieties of slow-aging mice. When both sexes

were available for study (acarbose, rapamycin, and CR), a two-factor

analysis of variation was used to test for the overall effect of the

intervention on the mRNA and to evaluate the interaction term as an

indication of possible sex effects in responses to the intervention. The

top line of Fig. 3 (panels ABC) shows that acarbose leads to a significant

increase in ATF3, CHOP, and ASNS mRNA in liver of both male and

female mice. The ‘Rx’ shown in each panel, derived from the two-factor

ANOVA, indicates that the overall effect of acarbose is statistically

significant, and the ‘Int’ designation, for ATF3 and ASNS, indicates that

the two sexes had significantly different responses: ATF3 response was

higher in females, and ASNS response was higher in males.

Figure 3 also shows significant overall effects of rapamycin and CR

diet on each of the three ATF4-modulated mRNAs. The effects are

significant for each sex considered independently, except for ASNS in

female mice of the rapamycin cohort; the ANOVA showed that male and

female responses to ASNS to rapamycin were indeed significantly

different. Male mice treated with a methionine-restricted diet (Fig. 3,

panels JKL) showed significant increases in each of the three mRNAs

(females were not available for analysis). Methionine restriction pro-

duced a very large increase, over 400-fold, in ASNS mRNA, suggesting

that this mRNA may be regulated by amino acid restriction in ways that

do not reflect merely altered ATF4 function. For the CL intervention, only

females were available for analysis, and these showed a significant

increase in each of the three mRNA tested.

As a control, we examined expression of a panel of liver genes whose

expression level is not thought to be related to ATF4 action, including

Bnip, ATG12, NRF2, PEPCK1, Sirt1, and FasL, in each of the five varieties

of slow-aging mice, and found no significant differences between

treated and control mice (data not shown) for any of these mRNAs.

We also measured ATF4 mRNA in liver of each of the five varieties of

slow-aging mice. Acarbose treatment led to a significant increase in

ATF4 mRNA in males and females. Rapamycin treatment led to an

increase in ATF4 mRNA in both sexes, significant in males. Methionine-

restricted males showed a significant increase (females were not

available for study). CR diet led to an increase in ATF4 mRNA in both

sexes, but the effect was not statistically significant. Female CL mice

showed a significant increase in ATF4 mRNA (males were not available

for study). Thus, ATF4 mRNA levels in liver were elevated in all eight

comparisons, with significant effects in 5 of the 8. The data are thus

consistent with the protein measurements shown in Fig. 1.

To see whether ATF4-regulated mRNAs were modulated in other

tissues, we measured the same three mRNA species in kidney and heart

of mice exposed to acarbose, rapamycin, or CR diet, using six males and

six females of each treated and age-matched control group (data not

shown). All three mRNAs were significantly increased in kidney of male

and female CR mice, and ATF3 mRNA increased significantly in kidney of

rapamycin treated males and females. For heart, we saw significant

increases in ATF3 in male and female CR mice and of ASNS in male and

female rapamycin-treated mice. We did not see any significant change in

heart or kidney of acarbose-treated mice. Thus, our data show that ATF4

elevation is characteristic of liver in all five of the tested slow-aging mice

(plus Snell and PAPP-A KO mice, reported previously), but effects of

acarbose, rapamycin, and CR on kidney and heart are not as consistent

as in liver.

Discussion

The availability of multiple methods to extend mouse maximal lifespan –

genetic, dietary, development, or drug-induced – provides an opportunity
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

(M) (N) (O)

Fig. 1 Quantitation of protein expression

of ATF4 and ATF4 targets. Levels of ATF4

protein (left: A, D, G, J, and M), ATF3

protein (middle: B, E, H, K, and N) and

CHOP protein (right: C, F, I, L, and O) in

liver of mice exposed to acarbose (top row:

A, B, and C), rapamycin (second row: D, E,

and F), calorie restriction (third row: G, H,

and I), methionine restriction (fourth row: J,

K, and L), or crowded litter intervention

(bottom row: M, N, and O). Bars show

means and SEM for N = 6 mice per age/

condition shown. Only male mice were

available for testing in the CR and Meth-R

condition, and only female mice in the CL

condition. Asterisk (*) indicates a significant

effect of the intervention, at P < 0.05,

using Sidak’s post hoc test after a one-

factor analysis of variation.
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to test the hypothesis that augmented ATF4 action, necessary for multiple

modes of lifespan extension in yeast (Steffen et al., 2008), is also

characteristic of slow aging in mice. Data in this paper show that ATF4

levels, levels of proteins controlled by ATF4, and levels of three mRNAs

regulated directly by ATF4 are elevated in liver of mice exposed to each of

five interventions shown elsewhere to increase maximal longevity: the

drugs acarbose and rapamycin, diets low in calories or methionine, or

transient milk deprivation limited to the suckling period. Our previous

work (Li & Miller, 2014) has shown similar increases in ATF4 protein and

downstream indicators of ATF4 function in liver of Snell dwarf mice

and PAPP-A knock-out mice, mutations that increase maximal lifespan

and health in old age by alteration of endocrine pathways connected to

GH and/or IGF-1. The previous study also documented augmented ATF4

responses in fibroblast cell lines derived from skin of adult Snell and PAPP-

A KO mice, suggesting that the relevant changes affect more than a

single cell type and that the changes include epigenetic modifications

preserved during multiple mitotic cycles in tissue culture medium. All of

these data are consistent with the idea that elevation of ATF4 function

may contribute to the slow aging and extended lifespan in each of these

diverse varieties of mice.

Levels of the mRNA for ATF4 itself were augmented in each of the 8

combinations of sex and intervention and reached statistical significance

for 5 of the 8 comparisons. Although ATF4 activity is largely controlled

by post-transcriptional changes, including proteasomal degradation,

ubiquitination, phosphorylation, and heterodimerization with co-factors,

our results suggest that alteration or production of stability of ATF4

mRNA may also contribute to the increase in ATF4 protein and activity

seen in each of these five kinds of slow-aging mice.

We chose to study ATF3, CHOP, and ASNS as representatives of the

much larger set of mRNAs whose transcription is sensitive to ATF4

activity, but it would be incorrect to assume that these mRNA levels are

regulated by ATF4 alone. The increases in mRNA and protein levels for

the tested genes are not in all cases closely paralleled by the degree of

increase in ATF4 protein in the same tissue. This is not surprising, as

genes whose transcription is modulated by ATF4 are also susceptible to

the influence of other regulatory pathways. Changes in ASNS mRNA, for

example, are in some of our models disproportional to the change in

ATF4 protein and to changes in ATF3 and CHOP mRNAs. We note,

however, that ASNS mRNA levels can be altered by other mechanisms,

including some related to ATF5 (Al Sarraj et al., 2005; Zhou et al., 2008)

and others dependent on DNA methylation of the ASNS promoter region

(Sugiyama et al., 1983; Ren et al., 2004) Thus, we do not see the

disparity among protein levels of ATF4-regulated genes, in different

kinds of slow-aging mice, as inconsistent with our central conclusion

that increased ATF4 action is a shared characteristic of seven kinds of

slow-aging mice, including the five models for which data are presented

in this study.

While we have not undertaken a comprehensive analysis of the

effects of age, sex, and background stock on ATF4, we do note that

elevation of liver ATF4 function is seen in male and female mice, at ages

from 6 to 22 months, and on at least four genetic backgrounds (CB6F1

and UM-HET3 in the current study, and segregating stocks for the Snell

and PAPP-A KO mice in the earlier report). We note that mRNA for two

of the ATF4-sensitive genes shows a sexually dimorphic response to

acarbose, with females responding more dramatically for ATF3 expres-

sion and less strongly than males with respect to ASNS. Acarbose leads

to significant lifespan extension in both males and females, but a much

greater response in the males (22% increase, compared with 5% in

females) (Harrison et al., 2014). A much wider survey of ATF4-responsive

mRNAs would be needed to develop hypotheses about patterns of sex-

specific modulation of responses to acarbose that might contribute to

the sex-specificity of the lifespan results.

Our data make a testable prediction: drugs or diets or other

interventions that increase maximal lifespan in mice should lead to

elevation of ATF4, at least in liver and perhaps in other tissues. Evidence

in support of this idea would provide further justification for analysis of

the role of ATF4 in postponement of aging, while discovery of

interventions that slow aging without modulation of ATF4 are also

likely to be of great interest.

Our approach does not provide definitive evidence that higher ATF4

function is either necessary or sufficient for the extended longevity and

extended good health seen in these many kinds of slow-aging mice. The

data do, however, provide strong grounds for testing such ideas in

future studies. For example, elevation of ATF4 might be used as a screen,

in cell lines or in genetically malleable invertebrate organisms, for drugs

that might deserve testing for beneficial effects in mice. Evaluation of

ATF4 pathways in multiple tissues might help to reveal tissues in which

altered ATF4 action is typically associated with slow aging. Our data, in

conjunction with the data on yeast which inspired our study (Steffen

et al., 2008), provide justification for evaluation of ATF4 dependent

pathways in multiple vertebrate and invertebrate organisms.

Studies of ATF4-null mice have documented roles for ATF4-depen-

dent pathways at several developmental stages and in adult life.

ATF4-deficient mice show defects in eye development (Tanaka et al.,

1998) and in production of erythrocytes by the fetal liver (Masuoka &

Townes, 2002), as well as bone formation (Yoshizawa et al., 2009),

angiogenesis (Wang et al., 2013), and elements of learning and memory

(Costa-Mattioli et al., 2007). Muscle-specific ATF4 knockout mice show

reduced induction of Gadd45a mRNA in response to stress and as a

result show less muscle atrophy after fasting or immobilization (Ebert

(A) (B)

(C) (D)

(E) (F)

(G)

Fig. 2 Representative images showing protein expression of ATF4 and ATF4

targets. Protein expression of ATF4 and ATF4 targets by Western blot in livers of

mice exposed to acarbose (A: male; B: female), rapamycin (C: male; D: female),

calorie restriction (E: male), methionine restriction (F:male), or crowded litter

intervention (G:female).
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(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

(M) (N) (O)

Fig. 3 Transcription of ATF4 targets in liver

of long-lived mice. Levels of mRNA for ATF3

(left), CHOP (middle), and ASNS protein

(right) in liver of mice exposed to acarbose

(top row: A, B, and C), rapamycin (second

row: D, E, and F), calorie restriction (third

row: G, H, and I), methionine restriction

(fourth row: J, K, and L), or crowded litter

intervention (bottom row: M, N, and O).

Bars show means and SEM for N = 6 mice

per age/condition shown. Only male mice

were available for testing in the CR and

Meth-R condition, and only female mice in

the CL condition. Data were analyzed by

two-factor ANOVA, with tests for effects of

intervention, sex, and the

[sex 9 intervention] interaction term.

Panels with the ‘Rx’ indicator had a

significant overall effect of the intervention,

and those with the ‘Int’ indicator had a

difference between males and females in

the response to the intervention. Asterisk

(*) indicates a significant effect of the

intervention, at P < 0.05, using Sidak’s post

hoc test after a one-factor analysis of

variation.
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et al., 2011). There is also evidence that ATF4 regulates obesity, energy

expenditure, and glucose homeostasis, in that ATF4-null mice are lean

and mildly hypoglycemic and resist obesity induced by aging or high

energy diets (Yoshizawa et al., 2009; Wang et al., 2010; Miller et al.,

2011). Effects on lipid metabolism are mediated through alterations of

PGC1a in white and brown adipose tissue (Wang et al., 2013).

Furthermore, ATF4-deficient mice show reductions in hypertriglyceride-

mia induced by high fructose diets (Zhu et al., 2013) and increased

insulin sensitivity (Zhang et al., 2013), suggesting that ATF4 may act as a

modulator of lipid metabolism in the liver.

The extent to which these diverse ATF4-modulated pathways might

be involved in control of aging rate, longevity, and the development of

neoplastic diseases, which are the most typical cause of death in mice,

is at this point a matter for speculation and new experimentation.

Construction of mice in which ATF4, or one or more of its immediate

effectors, has been elevated or interrupted in specific cell types, or in

which ATF4 pathways can be altered at specific postnatal time points,

will also help to clarify the potential role played by ATF4 in

postponement of disease and debility in aging animals. Evaluation of

polymorphisms that modulate ATF4 level, or expression of a suite of

ATF4-regulated mRNA, might also contribute to understanding of the

genetic basis of specific disease of aging, or the relationship of

genotype to overall health and longevity. Studies of ATF4 and its

mediators in cells derived from long-lived and short-lived species could

also produce insights into the possible role of the ATF4 system in

evolutionary adaptation to niches that support slower aging and

extended lifespan.

Methods

Mice and treatments

Acarbose: UM-HET3 mice, bred as the progeny of CB6F1 mothers and

C3D2F1 fathers, were exposed to mouse chow containing acarbose at

1000 parts per million (ppm, equivalent to milligrams of drug per

kilogram of chow) at 4 months of age and euthanized at 12 months of

age. Mice in this population were also used for evaluation of hormonal

and metabolic endpoints reported in (Harrison et al., 2014). Rapamycin:

UM-HET3 mice were given food containing encapsulated rapamycin

(Harrison et al., 2009) at 14 ppm from age 9 months and euthanized at

22 months of age. Calorie-restricted UM-HET3 mice (CR) were restricted

to 80% of ad libitum food consumption from 6 to 8 weeks of age and to

60% of ad libitum consumption from 10 weeks of age until sacrifice at

12 months; metabolic and gene expression data from these mice were

reported in (Miller et al., 2014). Mice fed with control mouse chow were

used as controls for each of these three test groups; these control mice

were born from the same breeding population, housed contemporane-

ously, and euthanized in parallel with the corresponding test group.

CL12 mice were produced as described (Sun et al., 2009): experimental

animals of the UM-HET3 stock were housed in groups of 12 newborns

per foster mother from the first day of life until weaning at age 3 weeks,

and then given free access to food after weaning. Controls for the CL12

mice were foster nursed in groups of 8 newborns per mother, and given

free access to food after weaning. CL12 and their controls were

euthanized at 6 months of age. Except for the acarbose group, mice

were euthanized between 7 and 10 am and were not fasted prior to

euthanasia. Mice in the acarbose group, and their controls, were fasted

for four hr prior to sacrifice and killed between noon and 1 pm. All

animal procedures were as approved by the University Committee on

Use and Care of Animals at the University of Michigan. The colony is

evaluated for specific pathogen status every 3 months, and all such tests

were negative during the period of this study.

Methods for sample preparation, immunoblotting, and quantitative

real-time PCR are as described in (Li & Miller, 2014).

Statistics and graphics

Bar graphics show mean values for N = 6 individual mice of each sex and

treatment group, and error bars indicate standard errors of the mean.

Protein levels are expressed in each panel relative to the mean level of

protein or mRNA in control mice of the same sex. mRNA values are

expressed relative to the levels in control male mice.
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